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LHC measurements
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LHC pp
√

s = 8 TeV

Data 20.3 fb−1

LHC pp
√

s = 13 TeV

Data 0.08 − 14.8 fb−1

Standard Model Production Cross Section Measurements Status: August 2016

ATLAS Preliminary

Run 1,2
√
s = 7, 8, 13 TeV

A number of accurate measurements from total cross section to rare

electroweak processes. For a few of the processes precision will

improve significantly with 300 fb−1, 3 ab−1 of data. Stringent tests of

SM require accurate theory predictions.
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Cross sections at the LHC

x

Q
2
 /

 G
e
V

2

Atlas Jets

H1

ZEUS

NMC

BCDMS

E665

SLAC

ATLAS W,Z

10
-1

1

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

The cross sections are given by a convolution of the parton densities

and coefficient functions, ∼ x1 f1(x1, µ) x2 f2(x2, µ) σ̂(x1, x2, µ).

Leading order relation between rapidity y and x1, x2: x1,2 =
Mℓℓ√

S
e±yℓℓ .
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Beyond precision cross sections: boosted jets

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
nt

rie
s 

/ 1
00

 G
eV

3−10

2−10

1−10

1

10

210

310

410

510

610 Data 2015-16
W+jets
tt
Single-t
Dibosons
Z+jets
Post-fit uncertainty
HVT m = 2.0 TeV

 PreliminaryATLAS

 = 13 TeV, 13.2/fbs

WW Signal Region (HP)

  [GeV]Jνlm
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
at

a 
/ M

C

0.5

1

1.5

m(Z’)  [GeV]

500 1000 1500 2000 2500 3000 3500 4000 4500

 W
W

) 
 [p

b]
→

 Z
’ 

→
(p

p 
σ

3−10

2−10

1−10

1

10
Observed 95% CL upper limit

Expected 95% CL upper limit

)σ 1±Expected limit (

)σ 2±Expected limit (

=1
V

 WW) HVT Model A, g→ Z’→(pp σ

=3
V

 WW) HVT Model B, g→ Z’→(pp σ

 PreliminaryATLAS
-1 = 13 TeV, 13.2 fbs 

• Larger
√

s at run-II and FCC increase importance of jet substructure

methods.

• Example: ATLAS limits on Z′ → WW using jets with R = 1

re-clustered to R = 0.2.

• Large background from QCD W+jets. Calibration of jet substructure

methods require detailed studies of jet fragmentation.

ATLAS-CONF-2016-062
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Higgs cross-section now and with 3 ab−1
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• Higgs fiducial cross section is determined for
√

s = 13 TeV with 20%

(30%) accuracy for H → 4ℓ (H → γγ) channel using 14.8 fb−1

(13.3 fb−1) by ATLAS.

• H → 4ℓ channel is not much senstive to background/pileup effects, for

14 TeV 3 ab−1 luminosity one may expect uncertainty of ∼ 1.5% per

experiment or 1% for the combination (excluding luminosity

uncertainty).

• Theoretical uncertainty from PDFs, dominated by the gluon density

uncertainty is at 2% level. Similar error from αS
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The gluon distribution from the 5 PDF sets
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• Gluon at x ∼ 0.01 important for

Higgs production

• Gluon at x > 0.3 important for

searches

• Gluon at x ∼ 0.1 important for tt̄

production.

• Good agreement of the three PDF4LHC sets (MMHT14, CT14

and NNPDF3.0)

• ABM12 set has different (low) αS , differs the most.

• HERAPDF agrees with PDF4LHC for 0.01 < x < 0.1, lower at

high x and higher at low x.
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HERA data for the gluon distribution

H1 and ZEUS
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• Observable:

σr ≈ F2 − y2

1+(1−y)2 FL

where 0 < y ≤ 1 and

S xy = Q2.

• Constraints on xg(x,Q2)

from scaling violation of

the SF F2:

dF2

d log Q2
∼ αS g

• Measurement of FL at

HERA is of limited

accuracy.

• The Q2 dependence of F2 is well constraint by the data, leading to

experimentally precise determination

• Some tensions between data and theory with NLO (NNLO) fit χ2/NDF =

1357/1131 ( 1363/1131). → N3LO ?
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Inclusive jets at
√

s = 13 TeV
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• New measurement of inclusive jet cross section using
√

s = 13 TeV data

• The dominant uncertainty, due to JES, is at 5% level for |y| < 0.5 and

pT < 1 TeV.

• Compared to predictions using NLOJET++ plus EWK corrections to

modern PDF sets.

ATLAS-CONF-2016-092
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Impact of jet measurements on xg
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• Use PDF-profiling method to estimate impact of the jet data on

HERAPDF2.0.

• Try different jet data: run-II DO PRL101:062001, CDF PRD78:052006,

CMS at
√

s = 7 TeV (R = 0.7), Phys. Rev. D87 112002.

• All jet samples have comparable constraining power on gluon.

• D0,CDF and ATLAS R = 0.4, 0.6 jet measurements lead to harder

gluon, CMS data do not change the shape significantly.
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NNLO calculations for jets

Very recently, NNLO predictions for inclusive jet production became

available (arXiv 1611.01460). The correction is relatively large at

low pT , the impact is to be evaluated.
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NNLO predictions vs DIS jet data
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New predictions

Phys. Rev. Lett. 117 (2016) 042001
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Phys. Rev. D 92 (2015) 074037
 hadr. corr.⊗aNNLO 
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• Normalized to inclusive DIS, inclusive-jet and dijet measurements using

H1 HERA Run-II data compared to approximate NNLO prediction from

JetViP and NNLO from NNLOJET (H1prelim-16-062).

• NNLO improves description of the data.
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W,Z production at
√

s = 13 TeV

fid )
m

ea
s

σ/
pr

ed
σ(

0.85

0.9

0.95

1

1.05

1.1

1.15
ATLAS

-113 TeV, 81 pb

(inner uncert.: PDF only)

Z±W+W
-

W

 experimental uncertainties⊕luminosity 

experimental uncertainties

MMHT14nnlo68CL
NNPDF3.0
CT14nnlo
ABM12
ATLAS-epWZ12nnlo
HERAPDF2.0nnlo

 x  
-310 -210 -110

re
f

)2
(x

,Q
Σ

)/
x

2
(x

,Q
Σ

 x

0.9

0.95

1

1.05

1.1 2 = 10000 GeV2Q
HERAPDF2.0
+ATLAS jets (y<1.5)

• Even for early
√

s = 13 TeV data the dominant

uncertainty on the fiducial Z-boson production

cross section comes from the luminosity.

• The luminosity uncertainty is improved for√
s = 8 TeV data to 1.9%. For

√
s = 13 TeV data

it is now at 2.1% and 1.8% for
√

s = 7 TeV data.

• The difference between HERA vs PDF4LHC

pdfs may be explained by the pull of the jet data.

• If the theory predictions are understood, Z

production can serve as a very good luminosity

monitor.
→ need for better σZ prediction.
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Towards accurate predictions of σZ
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Accurate predictions require few permile σr measurement. In

addition, flavour decomposition must be controlled (γ has different

couplings to quarks vs Z) using e.g. F
γZ

2
. This requires large statistics

samples with lepton beam polarisation.
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Constraining the charm-quark distribution

 [GeV] cM
1.2 1.4 1.6 1.8

) c
 (

M
2 χ

600

650

700

750

RT standard
RT optimised
ACOT-full

χS-ACOT-
ZM-VFNS

 
opt
C  M

H1 and ZEUS

Charm + HERA-I inclusive

 [GeV]cM
1.2 1.4 1.6 1.8

 [n
b]

Zσ

27

28

29

30

31

32
opt
C  M

 RT standard
 RT optimised

 ACOT-full
χ S-ACOT-

 ZM-VFNS 

 = 7 TeVs

Charm + HERA-I inclusive

H1 and ZEUS

• Charm-quark distribution can be computed perturbatively from the

gluon density. The computation is however difficult and in many cases it

is preferred to treat charm as a regular sea-quark (“VFNS”).

• Several VFNS exist, they may differ significantly.

• Fitting different schemes to the HERA Fcc
2

data constrains the schemes;

as the result predictions for the LHC become more stable.

H1+ZEUS: Eur.Phys.J.C73 (2013) 2311
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Measurement of W-boson mass
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Experimental precision on MW from Tevatron surpasses LEP. LHC

can aim for < 10 MeV experimental uncertainties. PDF errors

however are at > 10 MeV level, driven mostly by uncertainties of

valence quarks at x ∼ 0.01 (W-polarisation) and second generation

production, cs̄→ W (W pT ). While difficult with high pileup, the

measurement should be reported such that updates in PDFs could be

used to update determination of mW .
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Measurement of sin2 θW

lept
effθ 2sin
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0.00046±0.23221

-1 9 fbeeCDF 
0.00053±0.23248

-1 9 fbµµCDF 0.0010±0.2315

-1 3 fbµµLHCb 0.00107±0.23142

-1 5 fbµµee+ATLAS 
0.0012±0.2308

-1 1 fbµµCMS 
0.0032±0.2287

lASLD: 
0.00026±0.23098

0,b
FBLEP-1 and SLD: A

0.00029±0.23221

LEP-1 and SLD: Z-pole
0.00016±0.23149

• Measurements of sin2 θW at Tevatron

approach LEP/SLD accuracy.

• Despite much larger Z samples, the

measurements at the LHC are not

competitive at the moment due to

dilution in Z polarisation and

associated uncertainties.

• Dominant PDF uncertainties are due

to uv, dv at x ∼ 0.01 and sea to

valence quark ratio (similar to MW ).

They can be controlled to some

extend by measuring FBA off

MZ-peak and using W charge

asymmetry. Uncertainties should

decrease with more luminosity.

→ input from DIS to control valence and sea quarks at intermediate

x ∼ 0.01.
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Inclusive Z/γ∗ production as
√

s = 13 TeV

• Measurement of dσ/dMµµ in 15 < Mµµ < 3000 GeV range, with

∼ 2% systematic uncertainties for the peak region (plus 2.7%

lumi).

• Agrees well with NLO and NNLO expectations.

CMS-PAS-SMP-16-009
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High mass DY with 3 ab−1
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• Last accurately measurable bin is at

2 < Mℓℓ < 4 TeV. Use PDF

re-diagonalization procedure

(Phys.Rev.D80:014019) to determine

the linear combination of PDFs

affecting this bin the most.

• Largest sensitivity to Ū = ū, small to

D̄ = d̄ + s̄.
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Measurement of ZpT
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• Several measurements of ZpT
at
√

s = 7 and 8 TeV by ATLAS and CMS.

• ATLAS measurements use both Z → ee and Z → µµ channels, which

have comparable accuracy. The combined result is accurate to better

than 0.5% for PT < 100 GeV range.

ATLAS, arXiv:1512.02192
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pZ
T

with 3 ab−1
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Accurate (better than 1%) measurment of ZpT
up to 1.5 < pT < 3 TeV

bin where PDF errors are at ∼ 5% level. Process sensitive to (N)NLO

and EWK corrections, potentially new physics effects.

→ largest sensitivity to xg(x) at x ∼ 0.3.
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Summary

• A number of precision measurements at the LHC will

challenge theoretical predictions.

• PDF uncertainties can be significantly reduced by a

future ep collider, provided large kinematic coverage,

ccntrol of efficiencies and luminosity at ∼ 0.1% level.

• It is important to have multiple ways to control PDFs,

e.g. gluon density should be measured using scaling

violation, FL and DIS-jets.

• Sea decomposition, separation of valence/sea quark

contributions is important for LHC predictions,

e-beam polarisation, ability to measure CC, heavy

flavour tagging are essential ingredients for the future

collider.
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